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1. Introduction

Perhaps the first use of a rotating tether to sling payloads into orbit was 
mentioned by Joseph A. Carroll (Carroll, J.A.,1986). Carroll suggested that a rotating 
sling on the surface of an airless body such as the moon might accelerate 10-20 kg 
payloads to orbital velocity. J. Puig-Suari, et el, (Puig-Suari, J., Longuski, J. M., & 
Tragesser, S. G., 1995) explored the technical feasibility of a tether sling for lunar and 
planetary missions. The requirements for the tapered tether and the energy demands 
for some representative tether sling facilities were evaluated. In a NASA publication, 
D.V. Smitherman, Jr. (Smitherman Jr., D. V., 2000) suggested using a spinning tether 
on top of a 50 km tall tower as a sling to launch cargo into space from earth. A major 
drawback to these concepts is the lateral force placed on the tower when the payload is 
released. The Space Track Launch System is similar to these concepts but with a few 
exceptions. Space Track uses a counterweight permanently attached to the end of the 
ribbon and rotational kinetic energy to launch the payload from the ribbon. In this 
manner, the launch load is transferred to the ribbon, keeping the dynamic load on the 
tower to a minimum. The ribbon can be inspected periodically and replaced if 
necessary. 

The proposed Space Track Launch System is illustrated in Figure 1 below. Two 
tapered ribbons each of length lr and cross sectional area Ax are attached to counter-
weights (CW) with mass mcw. A launch vehicle (LV) travels down the length of the ribbon 
and launches off the ribbon at the counterweight. The launch vehicle achieves a 
resultant velocity due to the gravitational, tangential, and centrifugal acceleration down 
the ribbon. The tower height is such that there is the smallest possible drag on the 
ribbon and tower. 

Figure 1. Space Track Launch System
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In the following sections, the necessary equations are developed to determine 
the taper, area, and mass of the ribbon; the center of mass of the ribbon and counter-
weight combination; the angular velocity; the resultant velocity of the launch vehicle at 
launch; the moment of inertia of the ribbon and counterweight; and the rotational kinetic 
energy for the Space Track Launch System. With these equations, a possible second 
generation launch system using a carbon nanotube (CNT) ribbon is evaluated. A first 
generation system using presently available materials is suggested.

2. Tapered Ribbon

The ribbon material, the tower height, and the altitude of the counterweight will 
determine the length of the ribbon and the angle it makes with the vertical. For an earth 
based launch system, atmospheric properties (mainly drag) force the tower height and 
counterweight altitude into the upper atmosphere. Although in some cases a uniform 
ribbon would work, a tapered ribbon is suggested because of the lengths involved. 

The Space Track concept is similar to a 
conical pendulum. As shown in figure 2, the 
pendulum swings around an axis at an angle θ 
from the vertical. For a counterweight of mass mcw 

revolving around an axis with radius rcw, the tension 
in the ribbon at the counterweight is given by, 

T CW=√(mCW ac )
2+(mCW g )2     (1)

where ac is the centripetal acceleration equal to 
ω2lrsinθ, ω is the angular velocity, lr is the length of 
the ribbon, T is the tension in the ribbon, and g is 
the acceleration due to gravity. 

For the Space Track Launch System, the 
width of the ribbon is kept constant to serve as a 
track for the launch vehicle. Therefore, the ribbon 
will taper in thickness from the rotating hub to the counterweight. The area of the ribbon 
at the counterweight is equal to the greatest allowable stress afforded by the ribbon. 
Therefore,

T CW=σ ACW=mCW √(ω2 l r sinθ)2+g2     (2)

where σ is the working tensile strength of the material.

For a ribbon of length lr, the cross sectional area of the ribbon increases from the 
counterweight to the rotating hub. As such, the ribbon contributes a significant mass to 
the system. Therefore, to determine the angular velocity ω, the center of mass of the 
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ribbon and counterweight combination must first be determined. The center of mass of a 
system of particles is given by,

l cm=
∑
i=1

N

mi l i

∑
i=1

N

mi

(3)

To find the center of mass of the ribbon, the ribbon is divided into 100 m 
segments. Beginning at the counterweight, the mass of each segment is determined by 
the density of the material times it's volume. The volume is given by multiplying the 
cross-sectional area by 100 m. The cross-sectional area at each segment is given by,

Ai=
1
σ ∑

i=0

N

mi √(ω2 lcm sinθ)2+g2    (4)

where Ai is the area at the mass segment (A0 = area of the ribbon at the counterweight), 
mi is the mass of the segment (m0 is the mass of the counterweight), and lcm is the 
distance from the top of the tower to each successive center of mass (at i = 0, lcm = lr). 
Using equation 3 above, the center of mass is recalculated after the mass of each 
segment is determined. It is the sum of the masses plus the mass of the counterweight 
and the distance to the center of mass from the top of the tower which determines the 
area for the next 100 m segment of ribbon. In this fashion, the center of mass of the 
ribbon and counterweight is determined. With the center of mass known, the angular 
velocity is given by,

θ
ω

coscml
g= (5)

Unfortunately, the procedure requires the angular velocity to calculate the 
angular velocity. This requires an iteration process with an educated guess at the initial 
value. 

For example, for a CNT ribbon 400 km in length at an angle of 78.5o, the center 
of mass could be half the length of the ribbon. This gives the initial angular velocity 
equal to 0.016 rad/sec. A spreadsheet was developed to handle the calculations and is 
included in the appendix. From the spreadsheet, for a CNT ribbon with ρ = 1300 kg/m3 

and σ = 25 GPa (1/6 of the ultimate tensile strength, 2003, Wei, C., Cho, K., & 
Srivastava, D.), the angular velocity is 0.0149 rad/sec, the center of mass is 223 km, 
and the area of the ribbon at the tower is 0.175 mm. With the angular velocity known, 
the velocity of the launch vehicle at launch vL can now be determined. 
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4. Launch Velocity

It can be seen from Figure 1 that the velocity of the launch vehicle at launch is,

22
RTL vvv += (6)

where vT  is the tangential velocity and vR is the radial velocity of the launch vehicle. 

Figure 1 shows a launch vehicle (LV) accelerating down the ribbon. The 
tangential velocity of the launch vehicle at the launch point lpt is,

vT=ω l pt sinθ       (7)

The work-energy relationship is used to determine the radial velocity vR. 

The radial force FR on the launch vehicle at any point x along the ribbon is equal 
to the vector sum of the centrifugal force and the gravitational force at x. Therefore,

F R=√(mLV ω2 x sinθ)2+(mLV g )2

For long ribbons, the force due to gravity is small compared to the centrifugal force. 
Therefore, the radial force can be approximated by dropping the gravity term. This 
gives,

F R≈mLV ω2 x sinθ

The work done on the launch vehicle from the rotating hub to the launch point is,

W =∫
0

l pt

F R dx

Substituting FR from above and integrating gives,

W =(1
2 )mLV ω2l pt

2 sin θ

The work is equal to the change in kinetic energy of the launch vehicle in the 
radial direction at launch. Therefore,

(1
2)mLV v R

2 =( 1
2)mLV ω2l r

2 sinθ

Solving for vR gives,
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v R=ω l pt √sin θ     (8)

Substituting vT from equation 7 and vR from equation 8 into equation 6 gives,

v L=ω l pt √sinθ(1+sin θ)

where vL is the velocity of the launch vehicle at launch.

To get the launch point lpt  and therefore, the launch velocity, the maximum peak 
acceleration must be considered. To get an approximate value for the launch point, it is 
necessary to ignore the effects of gravity and again make use of the work-energy 
relation. From equations 7 and 8 above the radial velocity, vr, and the tangential 
velocity, vt, are approximately equal. The acceleration due to gravity will be reintroduced 
to determine the total acceleration.

The centripetal acceleration is ω2r and the tangential acceleration is 2ωvr. But 
since vr ≈ vt = ωr, the tangential acceleration is 2ω2r. Therefore, total acceleration is,

( ) ( ) 222 2 grrNg ++= ωω

where N is the multiplier for the maximum acceleration (i.e., N = 6 for a 6g acceleration), 
g is acceleration due to gravity equal to 9.81 m/s2, ω is the angular velocity, and r is the 
radial distance from the axis of rotation equal to lpt sin θ. Solving the above equation for 
lpt gives,

θω sin5
)1(

2

2 −
=

Ng
l pt (9)

For the CNT ribbon above, the launch point for a 6g acceleration is 119 km, the 
launch velocity is 2.5 km/s, the altitude of launch is approximately 130 km.

5. Kinetic Energy of Rotation

Kinetic energy is transferred to the launch vehicle and overcarriage from the 
Kinetic Energy of Rotation (K.E.R.) in the ribbon and counterweight. To determine the 
K.E.R., the total moment of inertia of the ribbon and counterweight combination is 
calculated. The moment of inertia is given by, 

I (r+cw)=∑
i=0

N

(mi ri
2)      (10)

The variables in equation 10 are already available from calculating the angular velocity. 
Therefore, by adding an additional column in the spreadsheet, the moment of inertia is 
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readily available. The results are shown in the appendix. Since there are two ribbons 
and two counterweights, the total moment of inertia It of the system is 2Ir+cw. Therefore, 
the K.E.R. of the Space Track Launch System is,

2

2
1... ωtIREK =

From the spreadsheet the K.E.R. Is 1.3 x 1013 J and, for a launch mass of 100 ton 
(80 ton launch vehicle plus a 20 ton overcarriage), the kinetic energy of launch is 3.1 x 
1011 J. To ensure dynamic stability of the tower and ribbon, it would be wise to launch 
another 100 ton mass 210 sec later. Therefore, the total energy of launch is 6.2 x 1011 J. 
With four 5 MW superconducting electric motors each having a mass of about 25 ton 
(2010, AMSC), it will take approximately 9 hours to restore the K.E.R. to the tower. Note 
that the kinetic energy of launch is two orders of magnitude less than the K.E.R. As 
such, the angle the ribbon makes with the tower changes slightly and the counterweight 
drops from approximately 70 km to 68 km.

6. Displacement of the Ribbon at Launch

Due to the Coriolis force on the launch vehicle and overcarriage and the fact that 
the ribbon is fixed at the tower and free at the counterweight, the ribbon will be 
displaced several thousand meters at the point of launch. This is very similar to the 
dynamic stability of the ribbon for the space elevator (2006, de Vries, J. page 44). From 
the Delft University of Technology final report, the displacement due to the Coriolis force 
is shown in figure 3 below and is given by,  

δmax=l pt(1−
l pt

l r
)(

2ωvR mLV

T
)      (11)

where δmax is the maximum displacement of the ribbon just prior to launch, lpt is the 
distance from the tower truss at which launch occurs, lr is the length of the ribbon, ω is 
the angular velocity, vR is the radial velocity of the launch vehicle, mLV is the mass of the 
launch vehicle and overcarriage, T is the tension in the ribbon, α is the displacement 
angle at the counterweight, and β is the displacement angle at the tower truss. Using 
the CNT ribbon parameters from above, the maximum displacement, δmax, is 
approximately 10 km, the displacement angle at the tower, β, is about 2.1o, and the 
displacement angle at the counterweight, α, is approximately 4.8o for a launch velocity of 
2.5 km/s (or a radial velocity of 1.8 km/s) and a launch mass of 100 ton. 
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Figure 3. Displacement due to Coriolis Force

7.0 Payload to Low Earth Orbit

What is the maximum payload to low earth orbit? To simplify matters, chose a 
low earth orbit of 150 km, the same height as the tower. Therefore, there is no change 
in potential energy and since there is little drag at the launch altitude; the ideal rocket 
equation can be used directly with no modification. The ideal rocket equation is,

m pascent=[exp ( Δv
gI sp

)−1] mmeco

where mpascent is the mass of propellant required to achieve orbit, Δv is the change in 
velocity required for low earth orbit, g is the acceleration due to gravity, Isp is the specific 
impulse, and mmeco is the mass of the launch vehicle at main engine cutoff.

The orbital velocity at 150 km is approximately 7,875 m/s. For a launch velocity 
of 2,899 m/s (which includes Earth's contribution), the Δv is 4,977 m/s. For a specific 
impulse of 330 sec (1992, Huzel, D.K. and Huang, D.H., page 380, Fig. 11-6) the mass 
of propellant required to achieve orbit is about 3.6 times the mass at main engine cutoff. 
For a gross liftoff mass of 80 ton, the mass at main engine cutoff is approximately 17.3 
tons. This mass consist of the payload mass, inert mass of the launch vehicle which 
includes integral propellant tanks, and all remaining propellants necessary to achieve a 
stable orbit, for orbital maneuvering, and retro fire to return to Earth. 
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So, what is the mass of the launch vehicle at main engine cutoff in terms of the 
payload capability? This number is hard to quantify. An approximate value is 
determined by considering the only reusable launch vehicle, the space shuttle. From 
page 310 of the referenced text (2002, Jenkins, D. R.), select the last five OV-102 
missions. Assume the weight of the orbiter on the launch pad is approximately equal to 
the weight of the orbiter at main engine cutoff. Divide this weight by the payload weight. 
This results in an average ratio of approximately 11. Therefore, the mass of the launch 
vehicle at main engine cutoff can be assumed to be approximately 11 times the payload 
mass. Using 17.3 tons as the launch vehicle mass at main engine cutoff gives a payload 
mass of approximately 1,500 kg. This is cargo to an orbiting space station or about 5 
passengers to an orbiting space station.

8.0 First Generation System

The above analysis is based on the future development of the CNT ribbon. What 
is possible with present day materials? The Spectra® 2000 (2006, Spectra®) fiber will 
make an excellent first generation ribbon. It has a low density, 970 kg/m3, a high 
strength, 3.5 GPa, bonds well with resins, and has the added advantage of being 
resistant to UV radiation, an attractive feature in the upper atmosphere. Therefore, the 
system consists of four Spectra® 2000 ribbons (two ribbons extending from opposite 
ends of the rotating truss). Each ribbon is 1 m wide. The ribbons serve as a track for the 
launch vehicle and overcarriage combination and are attached to a 20 ton 
counterweight. 

The counterweight must remain above 70 km to avoid any air resistance. For a 
tower height of 150 km and a ribbon length of 160 km, this gives an angle of 
approximately 60o between the ribbon and the tower. Inserting an initial value for the 
angular velocity into the spreadsheet along with the ribbon parameters, gives an 
angular velocity of 0.0218 rad/sec, a moment of inertia of 2.84 x 1016 kg-m2, a K.E.R. of 
6.8 x 1012 J, and a thickness for the ribbon at the tower of 6 cm.

 From equation 9, the launch point is 106 km for a 10g maximum acceleration 
giving a launch velocity of 3.4 km/s (which includes Earth's contribution). Using the 
same orbital altitude and engine parameters from above results in a 360 kg payload per 
launch vehicle to low earth orbit. Again, it would be wise to launch a second vehicle in 
approximately 144 seconds resulting in 720 kg to low earth orbit. From equation 9, the 
displacement of the ribbon at launch is approximately 310 m. With four 5 MW 
superconducting electric motors, it would take approximately 30 hours to restore K.E.R.

7. Summary

The Space Track Launch System is an all electric first stage launch system. A 
counterweight is permanently attached to the end of the ribbon and a liquid fueled fully 
reusable second stage launch vehicle is launched from the ribbon. The forces from the 
launch are several orders of magnitude less than the tension in the ribbon. As such, the 
stresses on the tower are greatly reduced. In the second generation system, a relatively 
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small amount of the total kinetic energy of rotation is given up to the launch vehicle and 
can be restored in less than eight hours.  A first generation system, built with present 
day materials, can launch two 20 ton launch vehicles 144 seconds apart and put 
approximately 720 kg of payload into a low earth orbit every thirty hours. Stronger 
materials under development today will lead to future generation systems with 
enhanced capabilities.
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Appendix

Lx 
The distance from the rotating truss to the mass segment. The initial distance is lr. The 
second row is =A10-100, third row is =A11-100, etc.

MomInta
The moment of inertia. First row it is just the mass of the counterweight multiplied by its 
distance from the axis of rotation squared (=mcw *(A10*sin(tht))^2). Each successive 
row it is the mass of the segment multiplied by its distance from the axis of rotation 
squared (=B10 + G10*(A11*sin(tht))^2, =B11 + G11*(A12*sin(tht))^2, etc). The sum of 
the moment of inertia of each mass segment is added to that of the counterweight for a 
total moment of inertia.

Mass Sum
The running sum of the masses (=mcw, =C10+G10, =C11+G11, etc.)

MassDist
The mass of each segment times its distance for the rotating truss (=mcw*A10, 
=D10+G10*A11, D11+G11*A12, etc.)

CM
The center of mass of each successive mass segment (=D10/mcw, =D11/C11, 
=D12/C12, etc.)
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Mcw = 200000
Omg = 0.0149
Sig = 2.50E+10
Rho = 1300
Tht = 78.5 1.3700866667
Grv = 9.81

Lx MomInta Mass Sum MassDist CM AreaSeg MassSeg Omg/KER
4.00E+05 3.07E+16 2.00E+05 8.00E+10 4.00E+05 7.01E-04 9.11E+01
4.00E+05 3.07E+16 2.00E+05 8.00E+10 4.00E+05 7.01E-04 9.11E+01
4.00E+05 3.08E+16 2.00E+05 8.01E+10 4.00E+05 7.01E-04 9.12E+01
4.00E+05 3.08E+16 2.00E+05 8.01E+10 4.00E+05 7.02E-04 9.12E+01
4.00E+05 3.08E+16 2.00E+05 8.01E+10 4.00E+05 7.02E-04 9.12E+01

5.00E+02 5.84E+16 8.95E+05 1.99E+11 2.23E+05 1.77E-03 2.30E+02
4.00E+02 5.84E+16 8.95E+05 1.99E+11 2.23E+05 1.77E-03 2.30E+02
3.00E+02 5.84E+16 8.95E+05 1.99E+11 2.23E+05 1.77E-03 2.30E+02
2.00E+02 5.84E+16 8.95E+05 1.99E+11 2.22E+05 1.77E-03 2.30E+02
1.00E+02 5.84E+16 8.96E+05 1.99E+11 2.22E+05 1.77E-03 2.30E+02
0.00E+00 5.84E+16 8.96E+05 1.99E+11 2.22E+05 1.77E-03 2.30E+02

0.0148766016
1.2966E+13



Space Track Launch System

AreaSeg
The area of the mass segment as given by equation 4 (=mcw/sig*SQRT((omg^2*E10* 
sin(tht))^2+grv^2, =C11/sig*SQRT((omg^2*E11*sin(tht))^2+grv^2,  =C12/sig*SQRT 
((omg^2*E12*sin(tht))^2+grv^2, etc.).

MassSeg
The mass of the segment (=100*F10*rho, =100*F11*rho, =100*F12*rho, etc.).

Omg/KER
Recalculates the angular velocity once the center of mass is determined (=SQRT(grv/
(E4010*cos(tht))) and calculates the kinetic energy of rotation (=B4010*omg^2) for both 
ribbons and counterweights.
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